variational calculation - significado y definición. Qué es variational calculation
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es variational calculation - definición

MATHEMATICAL METHODS USED IN BAYESIAN INFERENCE AND MACHINE LEARNING
Variational bayes; Variational Bayes; Variational Bayesian method; Variational inference; Variational free energy
  • Pictorial illustration of coordinate ascent variational inference algorithm by the duality formula<ref name=Yoon2021/>

Variational Bayesian methods         
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model.
Variational autoencoder         
  • The scheme of the reparameterization trick. The randomness variable <math>{\varepsilon}</math> is injected into the latent space <math>z</math> as external input. In this way, it is possible to backpropagate the gradient without involving stochastic variable during the update.
  • 300x300px
  • The basic scheme of a variational autoencoder. The model receives <math>x</math> as input. The encoder compresses it into the latent space. The decoder receives as input the information sampled from the latent space and produces <math>{x'}</math> as similar as possible to <math>x</math>.
DEEP LEARNING GENERATIVE MODEL TO ENCODE DATA REPRESENTATION
Variational autoencoders
In machine learning, a variational autoencoder (VAE), is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling, belonging to the families of probabilistic graphical models and variational Bayesian methods.
Socialist calculation debate         
QUESTION OF WHETHER CENTRAL PLANNERS CAN ACHIEVE RATIONAL, EFFICIENT ALLOCATIONS OF ECONOMIC RESOURCES FOR SOCIETY
Socialist Calculation Debate; Economic Calculation Debate; Economic calculation debate; Economic calculation argument; Socialist calculation controversy
The socialist calculation debate, sometimes known as the economic calculation debate, was a discourse on the subject of how a socialist economy would perform economic calculation given the absence of the law of value, money, financial prices for capital goods and private ownership of the means of production. More specifically, the debate was centered on the application of economic planning for the allocation of the means of production as a substitute for capital markets and whether or not such an arrangement would be superior to capitalism in terms of efficiency and productivity.

Wikipedia

Variational Bayesian methods

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood (sometimes called the evidence) of the observed data (i.e. the marginal probability of the data given the model, with marginalization performed over unobserved variables). This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data. (See also the Bayes factor article.)

In the former purpose (that of approximating a posterior probability), variational Bayes is an alternative to Monte Carlo sampling methods—particularly, Markov chain Monte Carlo methods such as Gibbs sampling—for taking a fully Bayesian approach to statistical inference over complex distributions that are difficult to evaluate directly or sample. In particular, whereas Monte Carlo techniques provide a numerical approximation to the exact posterior using a set of samples, variational Bayes provides a locally-optimal, exact analytical solution to an approximation of the posterior.

Variational Bayes can be seen as an extension of the expectation-maximization (EM) algorithm from maximum a posteriori estimation (MAP estimation) of the single most probable value of each parameter to fully Bayesian estimation which computes (an approximation to) the entire posterior distribution of the parameters and latent variables. As in EM, it finds a set of optimal parameter values, and it has the same alternating structure as does EM, based on a set of interlocked (mutually dependent) equations that cannot be solved analytically.

For many applications, variational Bayes produces solutions of comparable accuracy to Gibbs sampling at greater speed. However, deriving the set of equations used to update the parameters iteratively often requires a large amount of work compared with deriving the comparable Gibbs sampling equations. This is the case even for many models that are conceptually quite simple, as is demonstrated below in the case of a basic non-hierarchical model with only two parameters and no latent variables.